Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

УТВЕРЖДАЮ

Проректор по образовательной деятельности

А.Б. Петроченков « 03 » марта 20 23 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина:	Физические методы исследований материалов и процессов		
	(наименование)		
Форма обучения:	очная		
_	(очная/очно-заочная/заочная)		
Уровень высшего обј	зования: бакалавриат		
	(бакалавриат/специалитет/магис	стратура)	
Общая трудоёмкость	252 (7)		
	(часы (3Е))		
Направление подгото	ки: 28.03.03 Наноматериалы		
	(код и наименование направления	я)	
Направленность:	Наноматериалы (общий профиль, СУ	OC)	
_	(наименование образовательной программы	ы)	

1. Общие положения

1.1. Цели и задачи дисциплины

Целью учебной дисциплины является получение студентами знаний экспериментальных методов исследования равновесных систем и кинетики физико-химических процессов в широком диапазоне температур, скоростей изменения параметров, получение умений и навыков использования современного оборудования и приборов при проведении исследовательских работ, анализа источников погрешностей и разработке новых материалов и технологий.
Задачи учебной дисциплины:

- изучениетеоретическихосновиэкспериментальныхметодовисследованияфизических свойств конструкционных материалов;
- формированиеуменийинавыковвыбораметодовисследованиясвойствиликонтроля качества в соответствии с поставленной задачей;
- оценивание эффективности различных методов исследований и возможности снижения их трудоемкости.

1.2. Изучаемые объекты дисциплины

- методики экспериментального определения физических свойств, исследования закономерностей физических процессов, лежащих в основе методов исследований;
- оборудование для исследования физических свойств материалов.

1.3. Входные требования

Не предусмотрены

2. Планируемые результаты обучения по дисциплине

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ПК-1.3	ИД-1ПК-1.3	Знать: - основные физические процессы, лежащие в основе методов исследования различных свойств конструкционных наноматериалов; - теплофизические, поверхностные и вязкостные свойства конструкционных и функциональных материалов.	Знает особенности проведения расчётов конструкций и расчетно-экспериментального изучения закономерностей накопления повреждений современных материалов и наноматериалов;	Дифференцир ованный зачет

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ПК-1.3	ИД-2ПК-1.3	Уметь оценивать и интерпретировать полученные знания, расширять их и приобретать новое знание путем проведения физикохимических исследований процессов и материалов с использованием современных методов исследования.	Умеет осуществлять теоретическое обобщение научных данных, результатов экспериментов и наблюдений, выбирать методы и средства проведения исследований и разработок, осуществлять планирование эксперимента оценивать и интерпретировать полученные знания, расширять их и приобретать новые знания путем проведения физикохимических процессов и материалов;	Дифференцир ованный зачет
ПК-1.3	ид-3ПК-1.3	Владеть: - техникой контроля основных свойств наноматериалов и определения параметров дефектов; - навыками работы с техникой исследований основных свойств материалов.	Владеет навыками анализа научных данных, результатов экспериментов и наблюдений, методами анализа напряженно-деформированных состояний, техникой контроля основных свойств наноматрериалов и определения параметров дефектов	Защита лабораторной работы
ПК-1.4	ИД-1ПК-1.4	Знать основные методы исследования свойств материалов и процессов их обработки и переработки, точность, чувствительность и пределы применимости методов для различных типов материалов.	Знает основные методы исследования свойств материалов и процессов их обработки и переработки, методы анализа, систематизации, представления и обобщения данных путем применения комплекса методов при решении конкретных задач, возможности инженерных программных комплексов в области оценки состояния технических объектов;	Реферат
ПК-1.4	ИД-2ПК-1.4	Уметь использовать методики комплексных исследований материалов и процессов их обработки и переработки,	Умеет использовать методы моделирования и разработки технологических процессов формирования	Отчёт по практическом у занятию

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ПК-1.4	ИД-3ПК-1.4	современных методов исследования для различных типов материалов. Владеть: - методиками расчёта термодинамических и кинетических величин, в том числе, с применением универсальных пакетов программ навыками статистической	неоднородных наноструктурированных материалов, реализовывать алгоритмы пакетов прикладных вычислительных программах; Владеет навыками использования методов синтеза структуры, численного моделирования, механического поведения и прогнозирования эффективных свойств	Защита лабораторной работы

3. Объем и виды учебной работы

Вид учебной работы	Всего	Распределение по семестрам в часах		
Вид у поноп расоты	часов	Номер семестра		
		7	8	
1. Проведение учебных занятий (включая проведе-	124	72	52	
ние текущего контроля успеваемости) в форме:				
1.1. Контактная аудиторная работа, из них:				
- лекции (Л)	52	32	20	
- лабораторные работы (ЛР)	14		14	
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)	50	36	14	
- контроль самостоятельной работы (КСР)	8	4	4	
- контрольная работа				
1.2. Самостоятельная работа студентов (СРС)	128	72	56	
2. Промежуточная аттестация				
Экзамен				
Дифференцированный зачет	18	9	9	
Зачет				
Курсовой проект (КП)				
Курсовая работа (КР)				
Общая трудоемкость дисциплины	252	144	108	

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием		ем аудито і по видам	Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	П3	CPC
7-й семест	гр			
Методы определения теплофизических характеристик веществ и процессов Значение физико-химических исследований для изучения материалов, разработке высоких технологий и повышения качества продукции. Направления работ различных научных школ в России и за рубежом по физико-химическим методам исследования процессов и материалов. Вопросы стандартизации и метрологии. Погрешности измерений. Теория калориметрического опыта. Типы калориметров. Методы определения теплоемкости и теплоты фазовых переходов. Высокотемпературная	16	0	18	36
калори-метрия. Определение теплоты смешения. Стационарные и нестационарные методы измерения теплопроводности в области высоких температур. Методы определения физико-химических свойств расплавов	16	0	18	36
Теоретические основы стационарных и нестационарных методов измерения вязкости. Измерение вязкости свободных затухающих крутильных колебаний. Вибрационный метод измерения вязкости и его варианты. Типы определяемых плотностей твердых тел - объемная, пикнометрическая, рентгеновская. Экспериментальные методы определения плотности. Теоретические основы и методы измерения поверхностного натяжения расплавов. Определение поверхностного натяжения тугоплавких элементов.				
ИТОГО по 7-му семестру	32	0	36	72
8-й семест	гр			

Наименование разделов дисциплины с кратким содержанием		Объем аудиторных занятий по видам в часах Л ЛР ПЗ		Объем внеаудиторных занятий по видам в часах СРС
Методы изучения поверхности и поверхностных	10	7	7	28
свойств	10	,	,	20
Теоретические основы методов измерения поверхностных свойств. Классификация методов. Техника экспериментов и источники погрешностей. Методы измерения поверхностной энергии твердых тел. Методы исследования смачивания и растекания. Расчет межфазной энергии. Определение величины адсорбции компонентов расплава. Анализ точности методов. Методы определения удельной поверхности и пористости. Анализ дисперсного состава порошков, исследование морфологии и структуры дисперсных и ультрадисперсных порошков. Физические методы определения химического состава поверхностных слоев твердых тел.				
ехника статистической обработки экспериментальных данных	10	7	7	28
Статистическая обработка экспериментальных данных. Типы и классификация ошибок измерений, систематические и случайные ошибки. Необходимые сведения из теории вероятностей. Вероятностные оценки ошибок. Средние арифметические и средние квадратичные ошибки. Доверительные интервалы и доверительные вероятности. Закон сложения случайных ошибок. Коэффициенты Стьюдента. Числовые примеры.				
ИТОГО по 8-му семестру	20	14	14	56
ИТОГО по дисциплине	52	14	50	128

Тематика примерных практических занятий

№ п.п.	Наименование темы практического (семинарского) занятия
1	Идентификация химических соединений по инфракрасным спектрам поглощения.
2	Измерение вязкости расплавов методом затухающих крутильных колебаний.
3	Определение плотности методом гидростатического взвешивания.
4	Определение поверхностного натяжения расплавов методом «большой» капли.
5	Определение удельной поверхности дисперсных материалов.
6	Исследование температурной зависимости коэффициента линейного термического расширения материалов на дилатометре.

Тематика примерных лабораторных работ

№ п.п.	Наименование темы лабораторной работы
1	Особенности настройки параметров испытаний и последующей обработки опытных данных в зависимости от типа испытательной машины (электромеханическая, сервогидравлическая, электродинамическая) на примере одноосного растяжения стандартного образца.
2	Многопараметрический сбор опытных данных в испытаниях при комплексном использовании современных методов экспериментальной механики: установка и настройка элементов нагружающего и регистрирующего оборудования, синхронизация сбора и обработка данных.
3	Проведение статистической обработки результатов измерений свойств материалов при проведении механических испытаний.
4	Определение механический характеристик материалов на основе использования метода корреляции цифровых изображений и бесконтактной трехмерной цифровой оптической системы анализа полей перемещений и деформаций.
5	Особенности проведения механических испытаний цилиндрических образцов и обработки опытных данных при использовании неразрушающих методов контроля и систем регистрации температурных и деформационных полей.
6	Исследование эволюции температурного поля в процессе одноосного растяжения образцов композиционного материала с помощью тепловизионной системы.

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при котором учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопросы преподавателя нацелены на активизацию процессов усвоения материала, а также на развитие логического мышления. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установление связей с ранее освоенным материалом.

Практические занятия проводятся на основе реализации метода обучения действием: определяются проблемные области, формируются группы. При проведении практических занятий преследуются следующие цели: применение знаний отдельных дисциплин и креативных методов для решения проблем и приятия решений; отработка у обучающихся навыков командной работы, межличностных коммуникаций и развитие лидерских качеств; закрепление основ теоретических знаний.

Проведение лабораторных занятий основывается на интерактивном методе обучения, при котором обучающиеся взаимодействуют не только с преподавателем, но и друг с другом. При этом доминирует активность учащихся в процессе обучения. Место преподавателя в интерактивных занятиях сводится к направлению деятельности обучающихся на достижение целей занятия.

При проведении учебных занятий используются интерактивные лекции, групповые дискуссии, ролевые игры, тренинги и анализ ситуаций и имитационных моделей.

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям, лабораторным работам и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Печатная учебно-методическая литература

№ п/п	Библиографическое описание (автор, заглавие, вид издания, место, издательство, год издания, количество страниц)	Количество экземпляров в библиотеке
	1. Основная литература	
1	Анциферов В. Н. Перспективные порошковые материалы: учебное пособие. Пермь: Изд-во ПНИПУ, 2012. 116 с. 7,25 усл. печ. л.	5
2	Введение в нанотехнологию: учебник для вузов / Марголин В. И., Жабрев В. А., Лукьянов Г. Н., Тупик В. А. Санкт-Петербург [и др.]: Лань, 2012. 457 с. 37,70 усл. печ. л.	4
3	Кульметьева В. Б., Порозова С. Е., Сметкин А. А. Перспективные композиционные и керамические материалы: учебное пособие. Пермь: Изд-во ПНИПУ, 2013. 275 с. 22,25 усл. печ. л.	5
	2. Дополнительная литература	
	2.1. Учебные и научные издания	
1	Кобаяси Н. Введение в нанотехнологию: пер. с яп. 2-е изд. М.: БИНОМ. Лаб. знаний, 2008. 134 с.	2
2	Ковалев А. И., Щербединский Г. В. Современные методы исследования поверхности металлов и сплавов. Москва: Металлургия, 1989. 191 с.	3
3	Перспективные материалы и технологии для ракетно-космической техники: [сборник статей]. М.: ТОРУС ПРЕСС, 2007. 456 с.	2
4	Физико-химические методы исследования металлургических процессов: учебник для вузов / Арсентьев П. П., Яковлев В. В., Крашенников М. Г., Пронин Л. А. Москва: Металлургия, 1988. 511 с.	2
5	Физико-химические методы исследования металлургических процессов: учебное пособие для вузов / Филиппов С. И., Арсентьев П.П., Яковлев В.В., Крашенинников М.Г. Москва: Металлургия, 1968. 552 с. 34,50 усл. печ. л.	1
	2.2. Периодические издания	
	Не используется	
	2.3. Нормативно-технические издания	

Не используется				
3. Методические указания для студентов по освоению дисциплины				
Не используется				
4. Учебно-методическое обеспечение самостоятельной работы студента				
Не используется				

6.2. Электронная учебно-методическая литература

Вид литературы	Наименование разработки	Ссылка на информационный ресурс	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
литература	Анциферов В. Н. Перспективные порошковые материалы: учебное пособие. Пермь: Изд-во ПНИПУ, 2012. 116 с. 7,25 усл. печ. л.	UPSTUbooks166703	локальная сеть; свободный доступ

6.3. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО
Операционные системы	MS Windows XP (подп. Azure Dev Tools for Teaching до 27.03.2022)
Прикладное программное обеспечение общего назначения	Dr.Web Enterprise Security Suite, 3000 лиц, ПНИПУ ОЦНИТ 2017
Прикладное программное обеспечение общего назначения	MATHCAD 14 Academic, ПНИПУ 2009 г.
1	Microsoft Office Visio Professional 2016 (подп. Azure Dev Tools for Teaching)

6.4. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Наименование	Ссылка на информационный ресурс
База данных Scopus	https://www.scopus.com/
База данных научной электронной библиотеки (eLIBRARY.RU)	https://elibrary.ru/
Научная библиотека Пермского национального исследовательского политехнического университета	http://lib.pstu.ru/
Электронно-библиотечеая система Лань	https://e.lanbook.com/
Электронно-библиотечная система IPRbooks	http://www.iprbookshop.ru/
Информационные ресурсы Сети КонсультантПлюс	http://www.consultant.ru/

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Наименование необходимого основного оборудования и технических средств обучения	Количество единиц
Лабораторная работа	Сервогидравлическая двухосевая испытательная система Instron 8850	1
Лабораторная работа	Сервоэлектрическая одноосная испытательная система Instron 8862	1
Лабораторная работа	Цифровая оптическая система для анализа полей деформаций Vic-3D	1
Лекция	Ноутбук	1
Лекция	Проектор	1
Практическое занятие	Инфракрасная камера FLIR SC7700M	1
Практическое занятие	Компьютер	12
Практическое занятие	Ультразвуковой дефектоскоп TD Focus-ScanRX	1

8. Фонд оценочных средств дисциплины

Описан в отдельном документе

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

(фонд оценочных средств)

для проведения промежуточной аттестации обучающихся по дисциплине «Физические методы исследований материалов и процессов» Приложение к рабочей программе дисциплины

Направление подготовки: 28.03.03 Наноматериалы

Направленность (профиль) Информационные технологии механики и

образовательной программы: наноматериаловедения

Квалификация выпускника: «Бакалавр»

Выпускающая кафедра: Экспериментальная механика и

конструкционное материаловедение

Форма обучения: Очная

Форма промежуточной

аттестации:

Диф. зачет

Оценочные материалы (фонд оценочных средств) для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины. для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение двух семестров (7-го и 8-го семестров учебного плана) и разбито на 4 учебных модуля. В каждом модуле предусмотрены аудиторные лекционные занятия и самостоятельная работа студентов. В модуле 3 и 4 предусмотрены лабораторные работы. В рамках освоения учебного материала дисциплины формируются компоненты компетенций *знать*, *уметь*, *владеть*, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, сдаче отчетов по лабораторным работам и экзамена. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

	Вид контроля					
Контролируемые результаты обучения по дисциплине (ЗУВы)				жуточный / Бежны й	Итоговый	
	C	то	ОЛР	Т/КР/ КИЗ	Диф. зачет	Диф. зачет
Усвоенные знания						
3.1 знать основные физические процессы, лежащие в						
основе методов исследования различных свойств	C1	TO1		KCP1	TB	TB
конструкционных наноматериалов						
3.2 знать теплофизические, поверхностные и				КСР2	TB	ТВ
вязкостные свойства конструкционных и	C2	TO2				
функциональных материалов						
3.3. знать основные методы исследования свойств						
материалов и процессов их обработки и переработки,	C3	TO3		КСР3	TB	TB
точность, чувствительность и пределы применимости	CS	103				
методов для различных типов материалов						
	ные ум	ения	1			
У.1 уметь оценивать и интерпретировать полученные					ТВ	ТВ
знания, расширять их и приобретать новое знание				ОЛР1 ОЛР2		
путем проведения физикохимических исследований						
процессов и материалов с использованием						
современных методов исследования						
У.2 уметь использовать методики комплексных						
исследований материалов и процессов их обработки и				ОЛР3	ТВ	ТВ
переработки, точность, чувствительность и пределы						
применимости современных методов исследования для						
различных типов материалов						
Приобретенные владения						
В.1 владеть техникой контроля основных свойств			ОЛР4	ОПР4	К3	КЗ
наноматериалов и определения параметров дефектов				OJIP4		
В.2 владеть навыками работы с техникой				ОЛР5	КЗ	К3
исследований основных свойств материалов				OJIPS	КЭ	СЛ

В.З владеть методиками расчёта термодинамических и			
кинетических величин, в том числе, с применением	ОЛР6	КЗ	КЗ
универсальных пакетов программ			
В.4 владеть навыками статистической обработки	КИ34		КЗ
результатов измерений свойств материалов	KH34		КЭ
В.5 владеть навыками работы с аппаратурой для	КИ34		КЗ
исследования свойств материалов	Kr134		I/O

C — собеседование по теме; TO — коллоквиум (теоретический опрос); K3 — кейс-задача (индивидуальное задание); $O\Pi P$ — отчет по лабораторной работе; T/KP — рубежное тестирование (контрольная работа); TB — теоретический вопрос; TA — практическое задание; TB — комплексное индивидуальное задание на самостоятельную работу; TA — комплексное задание дифференцируемого зачета, TA — контроль самостоятельной работы.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в виде зачета, проводимая по результатам текущего, промежуточного и рубежного контроля.

1. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования компетенций обучаемых, повышение мотивации предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования бакалавриата, специалитета и магистратуры программам ПНИПУ предусмотрены следующие виды И периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий), защиты отчетов по лабораторным работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме.

Результаты по 5-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Промежуточный и рубежный контроль

Промежуточный и рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) проводится в форме защиты лабораторных (практических) работ и комплексных индивидуальных заданий (после изучения каждого модуля учебной дисциплины).

2.2.1. Защита лабораторных работ

Всего запланировано 6 лабораторных работ. Типовые темы лабораторных работ приведены в РПД.

Защита лабораторной работы проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.2. Защита отчета по практическим работам

Всего запланировано 6 тем практических работ. Типовые темы практических работ приведены в РПД.

Защита практических работ проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.3. Промежуточная аттестация (итоговый контроль)

2.3.1. Процедура промежуточной аттестации без дополнительного аттестационного испытания

Промежуточная аттестация проводится в форме зачета. Зачет по дисциплине основывается на результатах текущего, промежуточного и рубежного контроля по данной дисциплине.

Критерии выведения итоговой оценки за компоненты компетенций при проведении промежуточной аттестации в виде зачета приведены в общей части ФОС образовательной программы.

2.3.2. Процедура промежуточной аттестации с проведением аттестационного испытания

В отдельных случаях (например, в случае переаттестации дисциплины) промежуточная аттестация в виде зачета по дисциплине может проводиться с проведением аттестационного испытания по билетам. Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и комплексные задания (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности *всех* заявленных компетенций.

2.3.2.1. Типовые вопросы и задания для зачета по дисциплине Типовые вопросы для контроля усвоенных знаний:

1. Значение физико-химических исследований для изучения материалов, разработке высоких технологий и повышения качества продукции.

- 2. Методы определения теплоемкости и теплоты фазовых переходов.
- 3. Стационарные методы измерения теплопроводности в области высоких температур.
- 4. Теоретические основы стационарных и нестационарных методов измерения вязкости.
 - 5. Методы измерения поверхностной энергии твердых тел.

Типовые вопросы и практические задания для контроля освоенных умений:

- 1. Измерение вязкости расплавов методом затухающих крутильных колебаний.
- 2. Идентификация химических соединений по инфракрасным спектрам поглощения.

Типовые комплексные задания для контроля приобретенных владений:

- 1. Определение поверхностного натяжения расплавов методом «большой» капли.
 - 2. Определение удельной поверхности дисперсных материалов.

2.3.2.2. Шкалы оценивания результатов обучения на зачете

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 4-х балльной шкале оценивания.

Типовые шкала и критерии оценки результатов обучения при сдаче зачета для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при зачете считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 5-ти балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в виде зачета используются типовые критерии, приведенные в общей части ФОС образовательной программы.

Приложение 1.

Типовые задания для проверки умений и владений

Задание № 1.

Задание.

Вопрос 1.Высокотемпературная калориметрия. Определение теплоты смешения.

Вопрос 2. Анализ дисперсного состава порошков, исследование морфологии и структуры дисперсных и ультрадисперсных порошков.

Вопрос 3. Доверительные интервалы и доверительные вероятности.

Критерии оценки ситуационных заданий

Оценка «**пять** «**ставится**, если обучающийся осознанно излагает и оценивает суть данной ситуации, с аргументацией своей точки зрения, умеет анализировать, обобщать и предлагает верные пути решения складывающейся ситуации.

Оценка «**четыре**» **ставится**, если обучающийся понимает суть ситуации, логично строит свой ответ, но допускает незначительные неточности при определении путей решения.

Оценка «три « ставится, если обучающийся ориентируется в сущности складывающейся ситуации, но нуждается в наводящих вопросах, не умеет анализировать и не совсем верно намечает пути решения ситуации.

Оценка «два» ставится, если обучающийся не ориентируется и не понимает суть данной ситуации, не может предложить путей ее решения, либо допускает грубые ошибки.